Abstract

Acetamiprid removal was investigated by synthesized Graphene oxide, multiwall nanotube and graphite from an aqueous solution. For this propose, FT-IR, XRD, UV–Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the removal process. A novel PVC membrane electrode as selective electrode made for determining the concentration of acetamiprid. Batch adsorption studies were conducted to investigate the effect of temperature, initial acetamiprid concentration, adsorbent type and contact time as important adsorption parameters. The maximum equilibrium time was found to be 15 min for graphene oxide. The kinetics studies showed that the adsorption of acetamiprid followed the pseudo-second-order kinetics mechnism. All the adsorption equilibrium data were well fitted to the Langmuir isotherm model and maximum monolayer adsorption capacity 99 percent. Docking data of adsorption have resulted in the same as experimental data in good manner and confirmed the adsorption process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call