Abstract

Interfacial properties, such as wettability and friction, play critical roles in nanofluidics and desalination. Understanding the interfacial properties of two-dimensional (2D) materials is crucial in these applications due to the close interaction between liquids and the solid surface. The most important interfacial properties of a solid surface include the water contact angle, which quantifies the extent of interactions between the surface and water, and the water slip length, which determines how much faster water can flow on the surface beyond the predictions of continuum fluid mechanics. This Review seeks to elucidate the mechanism that governs the interfacial properties of diverse 2D materials, including transition metal dichalcogenides (e.g., MoS2), graphene, and hexagonal boron nitride (hBN). Our work consolidates existing experimental and computational insights into 2D material synthesis and modeling and explores their interfacial properties for desalination. We investigated the capabilities of density functional theory and molecular dynamics simulations in analyzing the interfacial properties of 2D materials. Specifically, we highlight how MD simulations have revolutionized our understanding of these properties, paving the way for their effective application in desalination. This Review of the synthesis and interfacial properties of 2D materials unlocks opportunities for further advancement and optimization in desalination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call