Abstract

In the evolving landscape of terahertz communication, the behavior of channels within indoor environments, particularly through glass doors, has garnered significant attention. This paper comprehensively investigates terahertz channel performance under such conditions, employing a measurement setup operational between 113 and 170 GHz. Analyzing scenarios frequently induced by human activity and environmental factors, like door movements, we established a comprehensive theoretical model. This model seamlessly integrates transmission, reflection, absorption, and diffraction mechanisms, leveraging the Fresnel formula, multi-layer transmission paradigm, and knife-edge diffraction theory. Our experimental results and theoretical predictions harmoniously align, revealing intricate dependencies, such as increased power loss at higher frequencies and larger incident angles. Furthermore, door interactions, whether opening or oscillations, significantly impact the terahertz channel. Notably, door edges lead to a power blockage surpassing the transmission loss of the glass itself but remaining inferior to metallic handle interferences. This paper's insights are pivotal for the design and fabrication of terahertz communication systems within indoor settings, pushing the boundaries of efficient and reliable communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.