Abstract

This study elucidates that relativistic effect plays a key role in catalytic C-H activation using a cationic Ir complex. Experiments show that the cationic Ir(I)-diphosphine catalyst can be used for the deuterium substitution of N-phenylbenzamide, whereas a cationic Rh(I)-diphosphine catalyst is scarcely effective. Density functional theory calculations, including the relativistic effect, demonstrate a large difference in the reaction energy diagrams for the C-H activation of N-phenylbenzamide between the cationic Ir and Rh catalysts. In particular, the relatively low reaction barrier and considerably stabilized product obtained for the Ir catalysts are rationalized by strong Ir-C and Ir-H interactions, which originate from the relativistic self-consistent d-orbital expansion of Ir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call