Abstract

Three [Cr6E8(PEt3)6] cluster molecules with E = S, Se, and Te have been synthesized by reaction of stoichiometric mixtures of Cr(II) and Cr(III) metal salts with silylated chalcogen reagents E(SiMe3)2 (E = S, Se, Te) in the presence of L = PEt3 = triethylphosphine. For the sulfide- and selenide-bridged clusters two crystallographic forms (trigonal R3̄ and triclinic P1̄), which differ in the presence of lattice solvent molecules, have been isolated. Structural data, optical spectra and quantum chemical calculations reveal the presence of low-lying excited states in [Cr6E8(PEt3)6] (E = S, Se), which would help in rationalizing the non-vanishing magnetic moments at 2 K revealed by DC magnetic measurements and EPR spectroscopy. These findings are partially in contrast to a previous report by Saito and co-workers (S. Kamiguchi, H. Imoto, T. Saito, Inorg. Chem., 1998, 37, 6852-6857.), who postulated an incorporated hydrogen atom as the source of paramagnetism at low temperatures for the trigonal forms of [Cr6E8(PEt3)6] (E = S, Se).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.