Abstract
2D graphene oxide (GO) membranes are gaining prominence for water reclamation from oily wastewater. Unresolved challenges include low membrane permeance from tight sheets and fouling during separation. In this work, a bioinspired Arabic gum (AG) was used as an intercalated agent with the help of glutaraldehyde to improve the GO membranes’ permeation and fouling resistance. The 2D-laminated separating layer is crafted through a self-assembling innovative approach utilizing pressurized dead-end assembly. The Arabic gum intercalated graphene oxide-modified ceramic membrane (AGIGO-CM) appeared superhydrophilic and underwater (UW) superoleophobic with a UW oil contact angle (UWOCA) of 156.1 ± 1.2°. The membrane prepared with 1 mg of AGIGO (AGIGO-1-CM) offers a flux of 17 times higher than pristine graphene oxide (p-GO) while maintaining a separation efficiency of >99% during the separation of the oil-in-water emulsions. Molecular dynamics (MD) simulations showed AG intercalation expanding the interlayer distance by up to 20 Å, with AGIGO having a higher fractional free volume (FFV) of 0.986 compared to p-GO’s 0.599. AGIGO-CM displayed lower interfacial formation energy (EIFE) of −1865.2 kcal/mol versus −765.5 kcal/mol for p-GO, indicating easier separation. It is further supported by the substantial interfacial thickness of 148 Å for AGIGO-CM compared to 53.0 Å for the p-GO membranes. AGIGO-CM showed minimal fouling, retaining >99% separation efficiency for 6 h. Compared to p-GO-CM, AGIGO-CM flux decreased by only 17.84% versus 44.72%. AGIGO-CM exhibited stability even in acidic and basic environments, showcasing its potential for high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.