Abstract
A new series of tripods were designed to form anion-responsive, luminescent lanthanide complexes. These tripods contain pyridine, thiazole, pyrazine, or quinoline chromophores combined with amide carbonyl oxygen and tertiary nitrogen atoms. Crystallographic and EXAFS studies of the 10-coordinated tripod-La(NO(3))(3) complexes revealed that each La(3+) cation was cooperatively coordinated by one tetradentate tripod and three bidentate NO(3)(-) anions in the crystal and in CH(3)CN. Quantum chemical calculations indicated that the aromatic nitrogen plays a significant role in lanthanide complexation. The experimentally determined stability constants of complexes of the tripod with La(NO(3))(3), Eu(NO(3))(3), and Tb(NO(3))(3) were in good agreement with the theoretically calculated interaction energies. Complexation of each tripod with lanthanide triflate gave a mixture of several lanthanide complex species. Interestingly, the addition of a coordinative NO(3)(-) or Cl(-) anion to the mixture significantly influenced the lanthanide complexation profiles. The particular combination of tripod and a luminescent Eu(3+) center gave anion-selective luminescence enhancements. Pyridine-containing tripods exhibited the highest NO(3)(-) anion-selective luminescence and thus permit naked-eye detection of the NO(3)(-) anion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.