Abstract

Redox behavior of [UO2(gha)DMSO](-)/UO2(gha)DMSO couple (gha = glyoxal bis(2-hydroxanil)ate, DMSO = dimethyl sulfoxide) in DMSO solution was investigated by cyclic voltammetry and UV-vis-NIR spectroelectrochemical technique, as well as density functional theory (DFT) calculations. [UO2(gha)DMSO](-) was found to be formed via one-electron reduction of UO2(gha)DMSO without any successive reactions. The observed absorption spectrum of [UO2(gha)DMSO](-), however, has clearly different characteristics from those of uranyl(V) complexes reported so far. Detailed analysis of molecular orbitals and spin density of the redox couple showed that the gha(2-) ligand in UO2(gha)DMSO is reduced to gha(•3-) to give [UO2(gha)DMSO](-) and the formal oxidation state of U remains unchanged from +6. In contrast, the additional DFT calculations confirmed that the redox reaction certainly occurs at the U center in other uranyl(V/VI) redox couples we found previously. The noninnocence of the Schiff base ligand in the [UO2(gha)DMSO](-)/UO2(gha)DMSO redox couple is due to the lower energy level of LUMO in this ligand relative to those of U 5f orbitals. This is the first example of the noninnocent ligand system in the coordination chemistry of uranyl(VI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.