Abstract

Friction has a considerable influence in metal forming both in economic and technical terms. This is especially true for sheet-bulk metal forming (SBMF). The contact pressure that occurs here can be low making Coulomb’s friction law advisable, but also very high so that Tresca’s friction law is preferable. By means of an elasto-plastic half-space model rough surfaces have been investigated, which are deformed in such contact states. The elasto-plastic half-space model has been verified and calibrated experimentally. The result is the development of a constitutive friction law, which can reproduce the frictional interactions for both low and high contact pressures. In addition, the law gives conclusion regarding plastic smoothening of rough surfaces. The law is implemented in the framework of the Finite-Element-Method. However, compared to usual friction relations the tribological interplay presented here comes with the disadvantage of rising numerical effort. In order to minimise this drawback, a model adaptive finite-element-simulation is performed additionally. In this approach, contact regions are identified, where a conventional friction law is applicable, where the newly developed constitutive friction law should be used, or where frictional effects are negligible. The corresponding goal-oriented indicators are derived based on the “dual-weighted-residual” (DWR) method taking into account both the model and the discretisation error. This leads to an efficient simulation that applies the necessary friction law in dependence of contact complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call