Abstract

With the modernization of urban development, land resources are becoming increasingly scarce. A new type of building model comprising an underground depot and a superstructure has been constructed. To study the hybrid ventilation (HV) in interlayer of the underground depot with a superstructure under monorail line section fire, full-scale numerical simulation and reduced-scale (1:50) experiment were performed. Five ventilation velocities were used under a certain heat release rate. The temperature distribution and stratification in the interlayer were examined, and the movement of the fire smoke was analyzed. The smoke layer was visualized using a laser sheet and the smoke layer thickness determined by N-percentage rule (N = 10, 20, 30) was compared with the results of visual observation. At the same time, CFD simulations were conducted to measure the height of smoke layer and the smoke front propagation. Besides, the distribution of carbon monoxide (CO) in the interlayer was also simulated. The results show that N value of 30 could properly determine the smoke layer thickness in relatively stable stage of combustion. HV had a better effect on smoke control than natural ventilation (NV) did. At a ventilation velocity of 1.4 m/s, the smoke layer in the interlayer remained in a steady state until its exclusion from the building. CO could be effectively controlled and did not spread all over the interlayer in HV systems. The structure of HV system can be adjusted according to the actual conditions of the various sizes and types of buildings. Thus, the HV system shows good adaptability and can be directly applied to the design and installation of new buildings such as underground garages and depots. The results of the fire dynamic simulations and experimental tests exhibited considerable agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call