Abstract

High-resolution infrared studies of laser ablation products from carbon-selenium targets have revealed a new vibrational band at 2057 cm−1 that is identified as the ν3 vibrational fundamental of the SeC3Se cluster. Because of the rich isotopic composition of selenium and the heavy nuclear masses involved, the vibrational band shows a relatively compact and complex structure despite the simple linear geometric arrangement. Overall, rotational-vibrational lines of six isotopologues could be assigned and fitted permitting the derivation of an accurate selenium-carbon bond length.Spectroscopic analysis has been greatly supported by high-level quantum-chemical calculations of the molecular structure and the harmonic and anharmonic force fields performed at the CCSD(T) level of theory. Scalar-relativistic effects on the molecular structure were also considered but found of little importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.