Abstract

This study focuses on the thermal analysis and comparing a lattice model and an optimized model of open-cell metal foams manufactured thanks to a metal casting process. The topological optimization defines the complex geometry through thermal criteria and a plaster mold reproduces it in 3D printing to be used in casting. The study of the thermal behavior conducted on the two open foam metal structures is performed based on several measurements, as well as numerical simulations. It is observed that the optimized metal foam presented less and non-homogenous local temperature than the lattice model with the gap of about 10 °C between both models. The pore size and porosity significantly affect the heat transfer through the metal foam. The comparison between numerical simulations and experimental results regarding the temperature fields shows a good agreement allowing the validation of the developed three-dimensional model based on the finite element method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.