Abstract

The hydro-acoustic noise radiating from underwater tunnels during vehicle passage may be harmful to aquatic fauna, and this is a particular concern for endangered species. Therefore, the effects of underwater noise radiation and propagation on aquatic biodiversity must be investigated. In this study, the dynamic response of the sediment and tunnel structure in the Yangtze River in China was explored by conducting a field test, and the associated noise radiation from the tunnel was recorded and investigated. A three-dimensional numerical model was then developed to simulate the vibration of the tunnel-sediment coupling system induced by random traffic-flow models. Next, a modal acoustic transfer vector-based method was used to predict underwater noise radiation by use of a three-dimensional finite-element acoustic model. Finally, the accuracy of the simulated results was verified by comparison with measurements. The results showed that the noise radiation induced by passing vehicles was approximately 14 dB greater than the background noise, with a main frequency range of 12–25 Hz. The random traffic-flow model had obvious influence of the simulated noise level above 20 Hz. Vehicle-induced underwater noise may thus have a direct effect on fish species that can perceive low-frequency sound pressure. The proposed method can be used for further investigation of methods to reduce the effect of underwater noise on aquatic fauna, especially endangered species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call