Abstract

ABSTRACTThis study is aimed to investigate the transient heat transfer process between the solid surface and the coolant (helium gas) in very high temperature reactor or intermediate heat exchanger. Transient heat transfer from a twisted plate with different length in helium gas was experimentally and theoretically studied. The heat generation rate was increased with an exponential function, Q = Q0exp(t/τ), where t is time and τ is period. Experiment was carried out at various periods ranged from 35 ms to 14 s. Platinum plates were twisted with the same helical pitch of 20 mm, and the effective lengths are 26.8, 67.8 and 106.4 mm (pitch numbers of 1, 3 and 5), respectively. It was clarified that the average heat transfer coefficient approaches quasi-steady-state value when the period τ is larger than about 1 s, and it becomes higher when τ is shorter than about 1 s. The heat transfer coefficient decreases with the increase of plate length. An empirical correlation for forced convection heat transfer for a twisted plate with various lengths was obtained based on the experimental data. Moreover, numerical simulation results were obtained for average surface temperature difference, heat flux and heat transfer coefficient of the twisted plates with different length and showed reasonable agreement with experimental data. Through the numerical simulation, distribution of heat transfer coefficient on heater surface, temperature distribution and velocity distribution were clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call