Abstract

The supercritical carbon dioxide (sCO2) Brayton cycle is the preferred power cycle for future nuclear energy, fossil energy, solar energy, and other energy systems. As the preferred regenerator in the cycle, the printed circuit heat exchanger (PCHE) exhibits a high heat transfer efficiency, compactness, and robustness. The structure design of its internal flow channel is one of the most important factors to enhance the heat transfer and reduce pressure loss. In the present work, a trapezoidal PCHE prototype is designed and manufactured, and its thermal-hydraulic performance as a regenerator is experimentally studied in the sCO2 test loop. The overall heat transfer coefficient exceeds 1.10 kW/(m2·K) and reaches a maximum of 2.53 kW/(m2·K) with the changes in the inlet temperature, the working pressure, and the mass flow rate. Correlations of the Nusselt numbers are proposed on both sides, with the Reynolds numbers ranging from 10,000 to 30,000 and 4800 to 14,000, and the Prandtl numbers ranging from 0.91 to 1.61 and 0.77 to 0.98 on the cold side and hot side, respectively. The pressure drop of the channels calculated by the peeling method using a single-plate straight prototype is less than 7 kPa and 15 kPa on the hot and the cold side, respectively. The heat recovery efficiency is analyzed to evaluate the performance as a regenerator. Finally, simulation works are carried out to verify the experimental results and expand the Reynolds numbers ranging from 3796 to 30,000 and 1821 to 14,000, on the cold side and hot side, respectively. This work provides the test methods and experimental correlations for the development of an efficient PCHE in the sCO2 Brayton cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.