Abstract

In order to further understand the mechanism of material volume change in the drying process, numerical simulations (considering or neglecting shrinkage) of heat and mass transfer during convective drying of carrot slices under constant and controlled temperature and relative humidity were carried out. Simulated results were validated with experimental data. The results of the simulation show that the Quadratic model fitted well to the moisture ratio and the material temperature data trend with average relative errors of 5.9% and 8.1%, respectively. Additionally, the results of the simulation considering shrinkage show that the moisture and temperature distributions during drying are closer to the experimental data than the results of the simulation disregarding shrinkage. The material moisture content was significantly related to the shrinkage of dried tissue. Temperature and relative humidity significantly affected the volume shrinkage of carrot slices. The volume shrinkage increased with the rising of the constant temperature and the decline of relative humidity. This model can be used to provide more information on the dynamics of heat and mass transfer during drying and can also be adapted to other products and dryers devices. Keywords: carrot drying, numerical simulation, heat, and mass transfer, shrinkage DOI: 10.25165/j.ijabe.20231601.6736 Citation: Jiang D L, Li C C, Lin Z F, Wu Y T, Pei H J, Zielinska M, et al. Experimental and numerical study on the shrinkage-deformation of carrot slices during hot air drying. Int J Agric & Biol Eng, 2023; 16(1): 260–272.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.