Abstract

The purpose of this paper is to study the pressure drop of an axial flow cyclone separator as a function of inlet velocities using experimental and computational fluid dynamics (CFD) methods. First, the resistance performance of the separator was acquired under ambient pressure and temperature with little change by wind tunnel experiments. Then, numerical simulations were carried out in CFD code Fluent 6.3 under standard operating conditions. A comparison between the experimental and CFD data demonstrates that the CFD method can predict the pressure drop of the axial cyclone separator excellently. Additionally, the results show that the axial flow cyclone separators have a pressure drop coefficient of approximately 7.5. To study the effect of ambient pressure and temperature on pressure drops, the same CFD method was employed to predict the resistance performance under various operating conditions. Then the numerical results were compared with the data of a normalization process method of pressure drops raised in this paper. Their comparison demonstrated that the normalization method had a high precision in predicting the influence of ambient operating parameters on pressure drops of an axial flow cyclone separator.

Highlights

  • IntroductionCyclone separators, which were developed in the last decades of 19th century, are devices that employ a centrifugal force generated by a swirling gas flow to separate particles from a carrier gas

  • Separation technology has a dominant role in many process industries

  • The experimental results were acquired under different operating conditions, while the computational fluid dynamics (CFD) data were obtained under a standard ambient pressure and at a temperature of 300 K

Read more

Summary

Introduction

Cyclone separators, which were developed in the last decades of 19th century, are devices that employ a centrifugal force generated by a swirling gas flow to separate particles from a carrier gas. Due to the relative simplicity, ease and low construction and operation, low space requirement, absence of moving parts, and adaptability to a wide range of operating conditions, cyclones have been considered the oldest and most commonly used industrial particulate control devices [1,2,3,4,5,6,7]. Cyclone design has remained largely unchanged for over a century.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call