Abstract

Evaluation of creep crack growth properties taking microscopic aspects into account is effective for developing more accurate life prediction of structural components. The present study investigated the relationship between creep crack growth properties and microscopic fracture aspects for austenitic alloy 800H and 316 stainless steel. The growth rate of wedge-type intergranular and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the void-type crack tip accelerated the crack growth rate. Based on these experimental results, a three-dimensional finite element method (FEM) code, which simulates creep crack growth, has been developed. The effect of creep ductility on da/dt vs C* relations could be simulated based on the critical strain criteria. The diffusion of vacancies toward crack tip would accelerate the crack growth under creep conditions. The change of vacancy concentration during creep was computed for a three-dimensional compact-type (CT) specimen model by solving the diffusive equation under multiaxial stress field. The experimental results that crack growth was accelerated by creep damages formed ahead of the crack tip could be successfully simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.