Abstract
The minimum ignition equivalence ratio of the strut stabilizer is an important parameter in the design of integrated afterburners. The ignition location significantly affects the ignition equivalence ratio and flame propagation, and therefore, it should be deeply studied. The ignition equivalence ratio and flame propagation at different axial ignition locations downstream of the strut stabilizer are studied in this paper. When the ignition distance is approximately the bluff body trailing edge width, a lower ignition equivalence ratio is required for ignition, and the flame propagates faster through the entire combustion chamber. For different ignition locations, the generated flame kernel at different locations all first propagates to the shear layer. Subsequently, the unilateral flame rapidly extends, ultimately igniting the entire combustion chamber. The flame propagation trajectory depends on the ignition location controlled by the non-reacting flow field and the distribution of kerosene concentration. The flame propagation trajectory mainly includes three paths: (1) the flame kernel is directly downstream the shear layer when the ignition location is close to the tail edge of the stabilizer, (2) the flame propagates upstream into the shear layer in a U-shape when the ignition location is far from the stabilizer but still in the recirculation zone, and (3) the flame propagates upstream into the recirculation zone and shear layer in a U-shape when the ignition location is outside the recirculation zone. In addition, the time for flame propagation to the shear layer is directly related to the ignition performance when the ignition location is within the recirculation zone. If the flame reaches the shear layer in a longer time, there will be more energy loss during the flame propagation process, and the ignition performance will deteriorate. The speed of the flame-trailing edge extension is directly related to the ignition fuel-air ratio, and the downstream extension of the flame is mainly affected by the turbulence velocity in the shear layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.