Abstract

Flexible membrane structure is generally used as wing skin for long-endurance low-speed aircraft, such as solar aircraft, to control the structure weight within the allowable range. Predictably, the elastic deformation of the membrane under complex loads will cause uncertain impacts on the aerodynamic performance. The existing research indicates that the deformation of the membrane wing is helpful to improve the aerodynamic characteristics. However, most of the research objects are non-thickness membrane wings. In this paper, wind tunnel experiments are performed on double membrane wings. The experiment results indicate that the membrane deformation behavior is related to the surface curvature distribution and will change the camber and thickness of the airfoil. The deformation has little effect on lift but has a significant effect on drag and pitching moment. On this basis, a high-precision fluid structure coupling analysis method for the wider range of research is introduced. The numerical analysis indicates that the deformation can delay the stall angle by 1°. Furthermore, based on the numerical results, suggestions on prestress setting during membrane skin laying are provided, and the numerical simulation results of two flexible skin wings are compared. The research results of this paper provide a scientific basis for the aerodynamic design and analysis of long-endurance low-speed aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.