Abstract
Aiming to investigate the mechanical performance of UHPC T-section beams, five specimens are fabricated and tested, considering the variable steel fiber volume fraction (SFVF). The code of the Association Francaise de Génie Civil (AFGC) is evaluated by test data. Additionally, based on Abaqus (2020), refined finite element analysis (FEA) models of specimens are established and validated by experimental data. Moreover, the parametric sensitivity analysis is carried out, which aims to further investigate the effect of shear span ratio, longitude reinforcement ratio, and stirrup ratio on the bending-shear behavior of T-section beams. The test results indicated that the ultimate load of the specimen improves with the increase of SFVF, and the use of steel fibers can greatly improve the shear capacity instead of the bending capacity. Furthermore, SFVF can change the failure mode; the specimens fail in shear failure when SFVF < 2%, while they fail in bending failure when SFVF ≥ 2%. From the evaluation of codes, the AFGC code is conservative in the prediction of ultimate capacity, which can guide the design of UHPC structures well. Additionally, from the parametric analysis of FEM, the failure mode transformed from shear failure to bending failure as the shear span ratio increased, particularly in specimens with SFVF ≥ 2.5%. Moreover, the stirrup ratio ρsv has a significant effect on the shear performance of structures with SFVF ≤ 1%, while it has less effect with SFVF ≥ 2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.