Abstract

ABSTRACT This paper is focused on the mechanical performance of the Dou-Gong bracket at the corner under vertical load. A full-scaled specimen was tested under the static compressive load. The load-displacement curves, load distribution law and displacement of components were discussed. A finite element model was established and validated with test results. The deformation and stress of the whole Dou-Gong bracket and main components were analyzed, and the influence of the wood properties and friction coefficients was studied. The results show that there are four stages in the load-displacement curve and the plastic stiffness is 76.36% lower than that in the elastic stage. The components in the oblique 45° direction mainly transfer the force, while the load distribution ratios in the width and oblique 45° directions of the lower layer is closer to 1. The displacements of the components in oblique 45° direction in the No. 2 and No. 3 layers are smaller than those of the components in width direction. With the increase of the compressive strength, the elastic moduli in the radial direction and the friction coefficients, the stiffness in the plastic stage increases and the maximum displacement decreases. However, the compressive strength and the elastic moduli in the longitudinal direction have little effect on the load-displacement curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call