Abstract

Global reliance on traditional cooling systems is a pressing concern, especially given their substantial energy demands and refrigerant-related greenhouse gas emissions. The need for sustainable cooling solutions is especially urgent in hot and humid regions. This study presents an innovative solution by introducing a compact, solar-driven cooling system that integrates a Desiccant Wheel (DW) and a Thermoelectric Cooler (TEC). This novel combination leverages solar energy to enhance cooling efficiency while reducing environmental impact. The system's performance was tested through experimental methods and non-dimensional analysis, which served to validate the TRNSYS simulation. The simulation included custom components representing the DW and TEC's physical characteristics. Results demonstrated that the system effectively reduces air temperature and humidity to maintain thermal comfort, achieving Coefficients of Performance (COP) of 0.94 and 1.13in Toronto and Vancouver, respectively. A key feature of the system is the heat recovery design, which uses waste heat from the TEC to regenerate the desiccant material, enhancing COP by 68%. Further analysis through TRNSYS simulation explored the system's adaptability to various climate conditions by testing a range of temperatures (26–43°C) and relative humidity levels (30–100%). This analysis identified three operational regions, optimizing the system's application based on environmental conditions. A life cycle assessment determined a Global Warming Potential (GWP) of 0.0172 kg CO2 per kW of cooling capacity and an Energy Payback Time (EPBT) of 3.34 years. The economic analysis indicated a total system cost of $2719, predominantly due to the DW and TEC components. In conclusion, this research offers a sustainable and efficient cooling system that provides thermal comfort in hot and humid climates, marking a significant advancement in climate control technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.