Abstract

To achieve the expected seismic properties of high energy consumption and resilience for well used concrete shear walls, the paper presents experimental and numerical study on seismic behavior of concrete shear walls reinforced by carbon fiber-reinforced polymer (CFRP) bars in boundary elements and magnetorheological (MR) dampers. Firstly, a full-scale multi-coil shear valve MR damper was developed and tested under cyclic load to study the effects of current and displacement on the mechanical properties of the MR damper. Then five full-scale cantilever wall specimens reinforced with CFRP bars and MR dampers were tested under reversed cyclic lateral load under different axial load ratios and damping forces. All specimens exhibited significant resilience with little residual drift less than 0.5 %. It was observed that with the increase of axial load ratio, the load-bearing capacity and energy consumption increased, while the ultimate deformation decreased. The load-bearing capacity and energy consumption were improved by increasing the current of the MR damper. Finally, a parallel numerical simulation and parameter analysis were conducted based on a proposed numerical analysis model considering the slippage of CFRP bars. The parameter analysis discussed the effects of the parameters of concrete strength, CFRP bar modulus, steel bar strength, and installation height of MR damper on seismic behavior of the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.