Abstract
To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported bridge model isolated by lead rubber bearings (LRBs). A synthetic fault rupture, consisting of low- and high-frequency simulations, was used to excite the test model from low to high amplitude. Test results revealed that lead rubber bearings are effective in protecting the girders and the piers of the bridge subject to fault rupture, but at the cost of large peak and residual bearing deformation or even the failure of LRBs. The bearings at near fault (NF) span are more susceptible to fault rupture than the crossing fault (CF) span because the participation of longitudinal response compensates the transverse seismic demand of the bearings at CF span. Two numerical models were constructed with differing modeling consideration of LRBs: a sophisticated one using Bouc-wen model and a simplified one using Bilinear model. Both numerical models were able to predict the behavior of test model equally well before the failure of the bearings, validating that the existing nonlinear analytical techniques are adequate to estimate the seismic response of bridges subjected to a fault rupture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.