Abstract

The metallic honeycomb core structure has important engineering applications in the aerospace and aviation fields due to several advantages, such as being lightweight, its strong resistance to deformation in high-temperature environments, and its excellent energy absorption characteristics. In the present study, a transient heating experimental system for high-speed flight vehicles was developed to study the thermal insulation characteristics of a superalloy honeycomb core structure at different thermal shock rates $$(5\,^{\circ }\mathrm{C}{\cdot }\mathrm{s}^{-1}\, \mathrm{to}\,30\,^{\circ }\mathrm{C}{\cdot }\mathrm{s}^{-1})$$ . The highest instantaneous temperature tested was $$950\,^{\circ }\mathrm{C}$$ . The three-dimensional finite element method was used to numerically calculate the thermal insulation characteristics of the metallic honeycomb core structure in a high-speed thermal shock environment. The calculated results agree well with the experimental results; this agreement demonstrates that to an extent, numerical calculations are a better alternative than expensive experiments. The results of this study provide an important reference for the thermal protection design of metallic honeycomb core structures of high-speed flight vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.