Abstract

As an environmentally friendly refrigeration system, the heat-driven Stirling refrigerator, which has demonstrated high efficiency and promising application prospects, is receiving significant attention for utilizing the waste heat to generate the cooling capacity. In this study, a heat-driven direct-coupled Stirling refrigerator, featuring an engine unit and a refrigeration unit directly coupled through a thermal buffer tube rather than utilizing a piston-based mechanism, is designed and tested. In comparison to the conventional heat-driven Stirling refrigeration systems, the proposed system exhibits the potential for significantly increased reliability and simplicity. Simulations and experiments were carried out to investigate the output characteristics of the system under different heating temperatures and mean pressures. The results show that higher heating temperature is beneficial for producing the acoustic power, thereby increasing the cooling capacity, with the mean pressure among 2.7–3.2 MPa. In the experiments, the system can provide a cooling capacity of 363W with a coefficient of performance of 0.17 when the heating, ambient, and cooling temperatures are 250, 35, and 7 °C, respectively. The results have validated the feasibility of the heat-driven direct-coupled Stirling refrigerator, which is a potential alternative for air-conditioning through waste-heat recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.