Abstract

The purpose of this work is to study the influence of the axial flow fan sweep on the downstream turbulent flow. The fans studied are three low-pressure and low-Mach-number axial flow fans, with respectively a radial, a forward and a backward sweep. Experimental and computational fluid dynamics (CFD) investigations are carried out on three fans, and the results are compared. The CFD method is a three-dimensional (3D) Reynolds average Navier–Stokes (RANS) numerical simulation with the Reynolds stress model (RSM) as the turbulence model. It allows us to compute the Reynolds stress tensor components. Unsteady velocity measurements are carried out downstream of the fans with hot-wire anemometry. The values of the three velocity components of the flow and the six components of the Reynolds stress tensor obtained from experiments and simulations are compared. Overall performances are also measured to validate the design and fan simulation. It appears that a forward sweep decreases the radial component of the velocity whereas a backward sweep increases this component. Moreover, the sweep has a significant influence on the turbulent kinetic energy downstream of the fan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.