Abstract

Several aspects of the thermal behavior of deposited stainless steel 410 (SS410) during the laser engineered net shaping (LENS™) process were investigated experimentally and numerically. Thermal images in the molten pool and surrounding area were recorded using a two-wavelength imaging pyrometer system, and analyzed using THERMAVIZ™ software to obtain the temperature distribution. The molten pool size, temperature gradient, and cooling rate were obtained from the recorded history of temperature profiles. The dynamic shape of the molten pool, including the pool size in both travel direction and depth direction was investigated, and the effect of different process parameters was illustrated. The thermal experiments were performed in a LENS™ 850 machine with a 3 kW IPG Photonics laser for different process parameters. A three-dimensional finite element model was developed to calculate the temperature distribution in the LENS™ process as a function of time and process parameters. The modeling results showed good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.