Abstract

The effects of different initial temperatures (T = 300–500 K) and different hydrogen volume fractions (5%–20%) on the combustion characteristics of premixed syngas/air flames in rectangular tubes were investigated experimentally. A high-speed camera and pressure sensor were used to obtain flame propagation images and overpressure dynamics. The CHEMKIN-PRO model and GRI Mech 3.0 mechanism were used for simulation. The results show that the flame propagation speed increases with the initial temperature before the flame touches the wall, while the opposite is true after the flame touches the wall. The increase in initial temperature leads to the increase in overpressure rise rate in the early flame propagation process, but the peak overpressure is reduced. The laminar burning velocity (LBV) and adiabatic flame temperature (AFT) increase with increasing initial temperature. The increase in initial temperature makes the peaks of H, O, and OH radicals increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.