Abstract

In this paper, the tensile properties of plain-woven aramid fabric style 724 (Kevlar® 129 fibre, 1000 denier, 24×24 yarns per inch) and the tensile properties of individual aramid yarn extracted from the fabric are presented. It was found that this fabric is balanced with less than 5% difference in strength between the warp and weft directions. The mechanical properties of the individual yarns were found to be lower than those reported for Kevlar® 129 fibre, which is explained by the fact that the yarns were damaged during the extraction process or weaving process. A 3D finite-element model of the tensile testing of plain-woven fabric was built at the mesoscale in Abaqus/Explicit by modelling individual crimped yarns and taking into account friction. Material properties and yarn geometry for the model were obtained from experimental observations. An orthotropic elastic model with failure criterion based on the yield stress was used. Numerical results were analysed and compared with experimental results. It was found that the numerical model can reproduce the physical experimental observations, the yield strength and the failure strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.