Abstract

In this paper, the impact and after-impact compression (CAI) properties of new none-felt needled composites were investigated by finite element and experimental methods. Micro-CT and digital image correlation (DIC) were used for structural characterization and recording surface strains in CAI specimens. The impact and CAI finite element models of needled composites were developed, and the damage mechanisms were analyzed. The results showed that the impact and CAI properties of none-felt needled composite were substantially improved. In the impact experiments, the failure firstly occurred in the interlayer and gradually extended to the fiber layer. In the CAI experiment, the damage gradually extended from the impact damage region to the specimen edges, and the specimen finally failed when the damage with the specimen edges extended together. The established finite element model agreed well with both the impact and CAI tests, and the errors were less than 5 % and 10 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call