Abstract

Experimental and numerical modal analysis on wind turbine blades has been previously studied, considering mainly low order bending modes. However, high-order modes are also critical modes for understanding blade dynamics. The mode coupling is essential because a better understanding of the high-frequency blade dynamics can support advances in model validation, blade aeroelastic simulations, blade design, and structural health monitoring. However, these high-order modes and the associated mode couplings of wind turbine blades have not been studied. This work presents a comprehensive experimental and numerical study based on three modal tests and a correlated finite element simulation to study the complex curvature mode shapes and mode coupling dynamics for a three-bladed wind turbine assembly. Three tests are conducted: Test 1, ten accelerometers are deployed on the whole assembly under impact excitation; Test 2, nine accelerometers are deployed on a single blade under impact excitation; and Test 3, a non-contact 3D Scanning Laser Doppler Vibrometer (SLDV) test is performed on a single blade under shaker excitation. This is the first work to use a 3D SLDV for an experimental modal test on the wind turbine blade. With 300–400 points measured with the 3D SLDV, experimental mode shapes having a high spatial resolution with 3D response are used to characterize the coupling for the low-order and high-order modes with complex curvatures. A reliable finite element model of the three-bladed assembly, including the composite blade modeling, is also developed and is well correlated with Test 2 and Test 3. With the high-fidelity 3D SLDV test and well-correlated finite element model, this is also the first work of using experimental and numerical approaches to investigate the high-order mode shape with complex curvatures and mode coupling of bending and torsional behavior that is present in the wind turbine blade for these high-order modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call