Abstract

Abstract Virtual testing is nowadays the standard in the design process of new tires. Besides modeling the static response of the tire itself, the dynamics of a rolling tire in contact with the road needs to be incorporated. Due to the uncontrollable environmental conditions and the complex structure of the tires, it is advantageous to use small-scale testing under more controlled conditions. Experimental characterization of frictional properties of rubber compounds is, however, limited due to the necessity of complex measurement systems. In this paper a commercially available laboratory abrasion and skid tester is used to ide.gify both friction and .giffness characteristics of the same rubber compound. The obtained friction properties are implemented in a finite element model of the setup, and different validation steps are presented. Finally, a steady-state transport approach is used to efficiently compute a steady-state solution, which is compared with the experimental results. The numerical results show a good qualitative agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.