Abstract

Conjugate heat transfer has significant relevance to a number of thermal systems and techniques which demand stringent temperature control, such as electronic cooling and chemical vapor deposition. A detailed experimental and numerical study is carried out to investigate conjugate heat transfer in a common configuration consisting of a horizontal channel with a heated section. Experimental data obtained from this study provides physical insight into conjugate heat transfer effects and facilitates validation of numerical conjugate heat transfer models. The basic characteristics of the flow and the associated thermal transport are studied. The numerical model is used to carry out a parametric study of operating conditions and design variables, thus allowing for the characterization of the conjugate heat transfer effects. It is found that the numerically predicted flow field and heat transfer results validate well to experimental observations. Conjugate heat transfer is shown to significantly affect the temperature level and uniformity at the heated section’s surface, channel walls and the gas phase, thus impacting the rate of heat transfer. This study provides guidelines and fundamental insight into temperature control during the combined modes of heat transfer, with implications to various thermal manufacturing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.