Abstract

A series of ballistic tests were performed to investigate the bulletproof performance of UHMWPE composites. The temporal evolution of the UHMWPE composite plate back-face bulge height and diameter were captured by high-speed photography. The experiments show the composite plate were perforated when the impact velocity greater than 880m/s. The maximum bulge height and diameter can reach to 3.63-8.23mm and 37-64.5mm at the experimental velocity range , respectively. After that, the numerical model was built with composite material model MAT59 in LS-DYNA and stress based contact failure between plies were adopted to model the delamination mechanism. The number of plies of numerical model shows a strong dependency on the numerical results. Comparisons between numerical predictions and experimental results in terms of bulge height and diameter are presented and discussed. The maximum bulge diameter is good agreement with experiment, but the computational results under predict the maximum bulge height. The computational analysis show the damage development of the plate penetration by the projectile is shearing dominated at first, then the plate undergoes delamination and stretching in the later part of the impact process. The von mises stress at front and back face of the plate were also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call