Abstract
The paper presents the study of experimental as well as the numerical study of air-water mist jet impingement cooling over a heated cylinder in the non-boiling region. The studies are conducted for various mist loading fraction, f = 0.0025, 0.0050, 0.0075 and 0.01; Reynolds number, Remix.=8000, 10,500, 13,000 and 15,500; and surface-to-nozzle spacing, H/d = 30, 40, 50 and 60. Enhancement in the heat transfer (η) for mist jet impingement as compared to air jet impingement is obtained from experimental and numerical analysis. The numerical study also helped in understanding the distribution and tracking of droplets in the computational domain. High enhancement in the heat transfer is observed with high mist loading fraction. Also, the lowest Reynolds number yielded the highest enhancement in heat transfer with comparison to the higher Reynolds number. At various surface-to-nozzle spacing, the enhancement in heat transfer is high for low surface-to-nozzle spacing near the stagnation zone to a certain point, after which point the enhancement reverses as higher enhancement in heat transfer is observed for high surface-to-nozzle spacing. As high as 408% and 775% enhancement in the heat transfer at the stagnation point is observed for f = 0.01, Remix.= 8000and H/d = 30 during experimental and numerical analysis respectively. The correlation has been proposed to estimate the enhancement in heat transfer at the stagnation point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.