Abstract

This paper studies a novel gas cyclone with a cylindrical filter face installed in the center from the vortex finder to the bottom hopper. The experimental results show that this composite cyclone has a higher collection efficiency and a lower pressure drop than the original cyclone. The mechanisms for the improvement are analyzed by both physical experiments and numerical simulations. By measuring dust samples collected at different places it is revealed that the center filter can prevent fine particles from entering the inner vortex and escaping, which accounts for the increase of the collection efficiency. In addition, the flow field of the composite cyclone is simulated by computational fluid dynamics and compared with that of the original cyclone. The analysis shows that with the filter layer installed, the swirling flow disappears in the vortex finder, which decreases the kinetic energy dissipation and hence lowers the pressure drop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call