Abstract

Accidental gas release is a major triggering event for the offshore oil and gas industry. This paper focuses on the experimental and numerical investigation for dispersion behavior of released gas on offshore platforms. For this purpose, an experimental system is designed and developed to investigate gas release and dispersion. A series of experiments are carried out, among which the scenarios with constant leakage rates and time-varying leakage rates are both emphasized. The gas concentrations at different sampling points are obtained to study the dispersion behavior and accumulation characteristics of the released gas. Furthermore, a numerical computational fluid dynamics model is established to replicate the experimental scenarios. Good agreement between experimental data and CFD simulation results is observed by calculating a series of statistical performance measures. The developed numerical model is subsequently utilized to investigate a gas release scenario on a practical offshore platform, in which a fully transient leakage rate is adopted considering the response of process protection measures. The developed numerical model could provide support for risk assessment and optimization of contingency plans against gas release accidents in offshore facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call