Abstract

The experimental and numerical studies have been carried out to investigate the blade passage frequency (BPF) noise of a cross-flow fan (CFF) with the block-shifted impeller. Firstly, the aeroacoustic and aerodynamic features about the five different block-shifted impellers have been obtained experimentally. Secondly, the dynamic pressure sensors were put in the noise generating surfaces to investigate the pressure fluctuations generated by the shifted blocks in the near-field through the cross-correlation analysis. Thirdly, the two-dimensional (2D) unsteady flow field has been simulated by commercial CFD software and the vortex flow patterns and the unsteady force of the blade have been analyzed to detect the noise source about the CFF. Finally, the noise properties about the CFF were predicted by a hybrid method through the Farassat’s equation and the surface pressure fluctuations were provided by the CFD simulations. A simplified theory model has also been built up at the same time. The comparisons are made between the results of hybrid method and the theory model to validate the correctness of the noise prediction methods. The accuracy of these results was also evaluated by the corresponding experimental ones. The results indicate that the impellers with different block-shifted angles are the same in aerodynamic performance but different in the BPF noise. The relations between the shifted angles and the BPF noise levels have been predicted and discussed for the noise reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.