Abstract

Ultra-high performance concrete (UHPC) as a joint material for precast bridge decks might reduce the width of the joint and improve its connection performance and durability. This study proposes a type of compact UHPC wet joint based on the mechanical properties of UHPC and the force characteristics of transverse joints in prefabricated bridge decks. The shear behavior of the novel joint was investigated through experimental study and numerical simulation. In addition, the shear properties of compact UHPC wet joints were compared with epoxy joints. The results indicated that the shear resistances of compact UHPC joints are comparable to those of epoxy joints. The failure process of the precast bridge deck with new joint might be divided into three stages: elastic stage, working stage with cracks, and yield stage. No interface cracks or reinforcement slippage was observed throughout the loading process, indicating that the UHPC joint and the epoxy joint exhibited adequate shear resistance. The ultimate load capacity and corresponding mid-span deflection of UHPC joint specimens were respectively increased by 8.6 % and 75.0 %, when compared with the epoxy joint specimens. Finite element analysis reveals that the transverse shear transfer range of the compact UHPC joints is within 57.1 %. Bending failure due to the yielding of the transverse reinforcement at the bottom of the precast bridge deck is the primary failure mode for both specimens. Moreover, the stresses applied to the deck system have good continuity at the joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call