Abstract

Abstract In the current study, the melting phase change heat transfer in paraffin-saturated in open-celled metallic foams was experimentally and numerically studied. The experiments were conducted with seven high-porosity copper metal foam samples ( ɛ ≥ 90%), and paraffin was applied as the phase-change material (PCM). The wall and inner temperature distribution inside the foam were measured during the melting process. The effects of foam morphology parameters, including porosity and pore density, on the wall temperature and the temperature uniformity inside the foam were investigated. The melting heat transfer is enhanced by the high thermal conductivity foam matrix, although its existence suppresses the local natural convection. A numerical model considering the non-Darcy effect, local natural convection, and thermal non-equilibrium was proposed. The velocity, temperature field, and evolution of the solid–liquid interface location at various times were predicted. The numerically predicted results are in good agreement with the experimental findings. The model as well as the feasibility and necessity of the applied two-equation model were further validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.