Abstract

Regarding the economical use of fiber-reinforced plastics (FRP) as a construction material for structural components whose additional value caused not only in their high specific mechanical properties. Due to the layerwise structure definition of continuous fiber reinforced composites the corresponding production technologies offers a high potential for integration of additional functional elements. Past efforts to the integration of functions in fiber-reinforced composites usual provide in front of a passive use of the piezoelectric effect (eg. structural-health monitoring). Through efficient and structurally defined using of piezoceramic actuators, the planar structure topology of cylindrical hollow FRP profiles can be actively influenced. Based on experimental studies on the definition of basic concepts for the integration of thermoplastic compatible piezoceramic modules (TPM) in fiber composite tubular segments, this paper deals with the understanding and performance capabilities of such actuarical hollow frp structures. The selective excitation and manipulation of the vibration behavior of such rotationally symmetric structures serves for generation of wave effects with radial translational characteristic. The performed experimental studies on the structural behavior of active piezo integral pipe segments are abstracted and compared by means of numerical simulations using multi-physical elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call