Abstract

Bridges crossing fault are vulnerable to surface fault ruptures. Previous studies on this topic are limited especially for thrust faults. It is necessary to examine the performances of fault-crossing bridges subjected to earthquake-induced surface fault rupture. This study investigates the seismic behavior of a recently proposed steel-concrete composite rigid-frame bridge (SCCRFB) with concrete-filled double skin steel tube (CFDST) piers subjected to the earthquake-induced surface rupture at a thrust fault. Shake table tests on a 1:10 scaled three-span SCCRFB subjected to across-fault ground motions were performed first. Detailed 3D finite element (FE) model of the bridge is then developed by using LS-DYNA and validated by the experimental results. The effects of the key parameters that influence the bridge responses to surface ruptures including the location of the fault, fault-crossing angle and fling-step are systematically investigated. Experimental and numerical results reveal that this novel bridge type has a very good seismic resistance capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.