Abstract

Supercritical water (SCW) is a novel thermal agent that has been recently utilized for the production of heavy oil. However, a lack of knowledge about its recovery mechanisms limits the application of SCW. In this study, pyrolysis and sandpack flooding experiments were performed to investigate the mechanisms and viability of SCW flooding. Then an innovative simulation model was developed for SCW flooding. Finally, sensitivity studies on SCW flooding were conducted by the developed model. The results showed that SCW flooding yielded a 13.99% increase in oil recovery in comparison to steam flooding, indicating that SCW flooding is technically applicable to offshore heavy oil reservoirs. Heavy oil upgrading in SCW can suppress coke formation and plays an important role in oil recovery. A novel numerical model for SCW flooding was established based on a history match of experiments. The simulation results suggested that during SCW flooding, SCW could induce heavy oil upgrading to increase oil mobility, and long-term injection of SCW may cause the formation of coke deposits. Higher injection temperatures and pressures would benefit the production performance of SCW flooding. However, an unlimited increase in temperature would damage formations by significant coke deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call