Abstract

In the present paper, flow and heat transfer characteristics of shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) is experimentally studied. Correlations for heat transfer and pressure drop, which are estimated by Nusselt number and friction factor, are fitted by experiment data for thermal design. Computational Fluid Dynamic (CFD) method is also used to compare the heat transfer and flow performance of STHX with continuous helical baffles (CH-STHX), STHX with combined helical baffles (CMH-STHX) and STHX with discontinuous helical baffles (DCH-STHX). The numerical results show that, for the same Reynolds number, the Nusselt numbers Nuo of the CMH-STHX and CH-STHX is about 37.6%, 78.2% higher than that of the DCH-STHX; the friction factor fo of the CH-STHX is about 14.8% and 150.2% higher than that of CMH-STHX and DCH-STHX. If the velocity ratios RCMH, CH and RDCH, CH are bigger than 1.55 and 4.0 in the Nusselt number range from 40 to 70, the CMH-STHX and the DCH-STHX may have higher Nusselt numbers than the CH-STHX for the same mass flow rate in the shell side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.