Abstract

Laser shock peening (LSP) is applied as the laser surface treatment technology to improve the fatigue resistance of aircraft parts with complex geometric features. In this paper, the effects of laser energy inputs on residual stresses and fatigue properties for hole-structured specimens of Ti6Al4V alloy treated by LSP are studied. Changes of residual stress distributions, fatigue behaviors and fracture morphologies are analyzed with different laser-induced shock pressures. The results show the fatigue life is prolonged by 137% compared with the untreated specimens due to the introduction of compressive residual stresses. The sectional observations of fatigue fracture morphology show the inwards movement of fatigue crack initiation positions and the complexity of fracture cracks after LSP treatment. The simulation results confirm that the fatigue life with different laser energy inputs depends strongly on the three-dimensional stress distribution around the hole. Among them, high surface compressive stresses and deep stress affected layers play a decisive role in improving fatigue life. The results in this study broaden the knowledge of fatigue behavior and explore engineering potentials of improved fatigue life for complex industrial specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call