Abstract

Previously conducted studies have established that deep underground rock masses have complex pore structures and face complex geological conditions. Therefore, the seepage problem of such rock masses seriously affects engineering safety. To better explore the seepage law of deep rock masses and ensure engineering safety, indoor experimental methods such as casting thin sections, scanning electron microscopy, and mercury intrusion testing were utilized in this study. The microscopic pore shape, size, distribution, and other structural characteristics of sandstone in coal bearing strata were analyzed. The tortuosity calculation formula was obtained by the theoretical derivation method. And a numerical model was established for seepage numerical simulation research through microscopic digital image methods. The seepage law of surrounding rocks in the Tangkou Coal Mine roadway under different conditions is discussed. The research results indicate that the complexity of the pore structure in porous media leads to an uneven distribution of flow velocity and pressure within the medium. Meanwhile, with the change of physical properties, the fluid flow characteristics also undergo significant changes. The research results can effectively guide micropore water blocking, reduce the impact of groundwater on the environment, ensure the environment and safety of the project, and provide guidance for other geological projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call