Abstract

Devolatilization is an important process for separating and removing unnecessary residual volatile substances or solvents during the production of polymers using twin-screw extruders. Latinen proposed a surface renewal model to determine the concentration of volatile components in the extrudate of a single-screw extruder. When a twin-screw extruder is used to calculate the concentration, it is necessary to use the exposed surface area of the resin in the starved region of Latinen’s model, which, however, is difficult to estimate. In our previous work, we numerically determined resin profiles of the screws using the 2.5D Hele–Shaw flow model and the finite element method, which helps in estimating the surface area of devolatilization. In this study, we numerically analyzed the volatile concentration of the extrudate in a self-wiping corotating twin-screw extruder using Latinen’s surface renewal model along with our resin profile calculation method. The experimental results of the concentrations of the volatile component (toluene) in the extrudate of polypropylene agreed well with its numerical calculation with a relative error of 6.5% (except for the data of the lowest rotational speed). Our results also showed that decreasing the flow rate and increasing the pump capacity were effective for removing the volatile component. The screw pitch of a full-flight screw was not affected by the devolatilization efficiency with a fixed flow rate and screw speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.