Abstract

The three-dimensional axisymmetry-breaking instability of axisymmetric flow between a rotating lid and a stationary cylinder is analyzed both numerically and experimentally for the case of tall cylinders with the height/radius aspect ratio between 3.3 and 5.5. A complete stability diagram for the primary three-dimensional instability is obtained experimentally and computed numerically. The instability sets in due to different three-dimensional disturbance modes that are characterized by different azimuthal wavenumbers. The critical Reynolds numbers and associated frequencies are identified for each mode. The onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. The results are compared to the numerical stability analysis. The measured onset of three dimensionality is in a good agreement with the numerical results. Disagreements observed in supercritical regimes can be explained by secondary bifurcations that are not accounted for by linear stability analysis of the primary base flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.